A New Lithium 5-Methyl-1,3-dithia-5-azacyclohex-2-ylborate—5-Borane and Two Dimeric 5-Methyl-1,3-dithia-5-azacyclohex-2-yllithium Compounds — Stereochemistry and Reactivity

Carlos Guadarrama-Pérez, Gregorio Cadenas-Pliego, Luz Maria R. Martínez-Aguilera, and Angelina Flores-Parra*

Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, México D.F. 07000, México

Received November 7, 1996

Keywords: Lithium 5-methyl-1,3-dithia-5-azacyclohex-2-ylborate – 5-borane / 5-Methyl-1,3-dithia-5-azacyclohex-2-yllithium / Nitrogen heterocycles / Sulfur heterocycles / Lithium

Syntheses of the dimers of axial 5-methyl-2-dithiazinyllithium (4) and equatorial 5-methyl-2-dithiazinyllithium-5-borane (5), and lithium 5-methyl-2-dithiazinanylborate-5-borane (6) are reported. Compounds 4, 5, and 6 are configu-

rationally and conformationally stable. The ^{1}H -, ^{13}C -, ^{11}B -, and ^{7}Li -NMR study of the reactions of **4** and **5** with $BH_{3}-S(CH_{3})_{2}$, $BH_{3}-THF$, and $CH_{3}I$ is presented.

We have previously reported that dithiazine 1, which is a molecule with five lone pairs available for coordination, reacts with borane—THF to give a stable N—BH₃ adduct 2 which has a preferred conformation with the BH₃ group equatorial; the sulfur atoms do not coordinate to BH₃^[1-3]. Heating transforms the heterocycle 2 into the boradithiazine 3^[2] (Scheme 1). We have decided to add a new lone pair to dithiazines 1 and 2, through the synthesis of a carbanion at C-2, and to explore the competition for coordination to Lewis acids. Herein, two 2-dithiazinyllithium compounds (4 and 5) are reported, and their reactions with borane and methyl iodide are investigated.

Scheme 1

Results and Discussion

Synthesis of 2-Dithiazinyllithium Heterocycles 4 and 5

A) 5-Methyl-1,3-dithia-5-azacyclohex-2-yllithium (4): One of us has earlier reported on the synthesis of $4^{[4]}$. It was prepared from the reaction of heterocycle 1 with butyllithium in THF. The carbanion is stable enough to allow determination of its structure by NMR; its resists solvent evaporation and dissolution in dry [D₈]THF. The ¹H-NMR spectrum showed the presence of a pure compound. Evidence of the covalent lithium—carbon atom bond is provided in the ¹H-coupled ¹³C-NMR spectrum, by the shift of the C-2 resonance to lower frequencies ($\Delta \delta = 3.0$ ppm) which appears as a doublet ($\delta = 31.3$, $J_{CH} = 130$ Hz; in

the parent compound C-2 is a triplet, $J_{C-H} = 151$), the smaller coupling constant C-H for C-2 in compound 4 is a consequence of the donor character of the lithium ion. In the ¹H-NMR spectrum 2-H gives rise to a singlet ($\delta = 3.36$). The ¹H-, ¹³C-, and ¹⁵N-chemical shift data for NCH₃ in 4 are similar to those of 1, this indicates the axial position of the methyl group and the absence of a lithium coordination to the nitrogen atom, for example, in a boat conformation (Scheme 2). The ⁷Li-NMR spectrum ($\delta = -0.16$, $w_{1/2} = 8.4$ Hz, [D₈]THF) is characteristic of alkyllithium compound (δ ⁷Li of BuLi is 0.63, [D₈]THF, sharp line)^[5]. Methylation and deuteration at C-2 give additional evidence of the lithium bonding. Addition of D₂O provides the monodeuterated compounds at C-2 (1[D₁]_{ax} and 1[D₁]_{eq}).

Scheme 2

Compound 4 was found in a preferred chair conformation as denoted by the different resonances of equatorial and axial hydrogen atoms in its $^1\text{H-NMR}$ spectrum at room temperature. The configuration of C-2 was deduced by comparison of the NMR data of 4 with those of the frozen dithiazine 1 (-90°C, 270 MHz, [D₈]THF)^[1,3] and compound 5 (Figure 1). The lithium ion principally affects the chemical shifts of the C-2 and 2-H signals; in the equatorial position its electronic donor effect is stronger than in axial

FULL PAPER ______ A. Flores-Parra et al.

position (compound $5^{[6]}$). The NMR spectra of the isolated compound 4 show the presence of tetrahydrofuran coordinated to the lithium ion, OCH₂ and OCD₂ (from the dcuterated solvent) groups are slightly shifted to high field (13 C $\Delta\delta = 0.2$).

Figure 1. 1 H-, 13 C- (-), 7 Li- (\square) and 15 N- (=)-NMR data of compounds 1, 2, 4 and 5

A peak at 281.30 in the mass spectrum shows the presence of a dimer $[M^+ - H]$, the monomeric compound is also observed (C₄NS₂LiH₈: 141.15). The dimeric structure is supported by the report of an X-ray diffraction study of a similar dimeric lithium compound^[7] (Figure 2).

Figure 2. Reported structure of the dimer of 5-methyl-1,3-dithiocyclohexane found by an X-ray diffraction study; the lithium ions are also coordinated to N,N,N',N'-tetramethylethylenediamine¹⁷¹

An explanation of the stability of the axial lithium group in compound 4 is that it forms a stable dimer as demonstrated by the molecular mechanic calcualtions^[8] [E = 10.7 kcal]. The isomeric dimer, with the lithium ion in equatorial position, has a similar calculated energy [E = 11.9 kcal] (Figure 3).

In order to check the structure of compound 4 we decided to synthesize the 1,3-dithiocyclohex-2-yllithium from butyllithium and 1,3-dithiocyclohexane. It was earlier reported that this compound is in a preferred conformation with the lithium ion in the equatorial position, its dimeric nature was not mentioned^[9,10]. The ¹H-NMR spectrum was uncorrectly assigned in ref.^[10]. We have performed 2D-¹³C/¹H-HETCOR and ¹H/¹H-COSY experiments in order to unequivocally assign the spectra. The shifts of the axial and equatorial 4-H and 6-H signals in 1,3-dithiocyclohex-2-yllithium were compared with those of an anchored 2-substituted 1,3-dithiocyclohexane^[11]. We have found the same trends as in compound 5 indicating the equatorial preference of the lithium ion in both compounds (Figure 4).

B) 5-Methyl-1,3-dithia-5-azacyclohex-2-yllithium-5-Borane (5): The reaction of the BH₃ adduct **2** with *n*BuLi pro-

cceds cleanly to give the corresponding carbanion without affecting the N-borane group. The stcreochemistry of 5 was deduced from the 1 H- and 13 C-NMR data (Figure 1). The C-2 signal is a doublet in the 1 H-coupled 13 C spectrum ($\delta = 19.4$, J = 133), the 2-H gives rise to a singlet ($\delta = 3.52$). The reaction afforded only one isomer in a fixed conformation with the lithium ion in the equatorial position, coordinated THF is detected in the NMR spectra. Compound 5 shows a signal at $\delta = -2.39$ in the 7 Li-NMR spectrum ($w_{1/2} = 8.4$ Hz, [D₈]THF). The mass spectrum presents a peak at 284.50 for the dimer [M⁺ - B₂H₄], another pcak at 155.45 is attributed to the monomer C₄NS₂BLiH₁₁. Addition of D₂O provides two compounds monodeuterated at C-2 (2[D₁]_{eq}, 2[D₁]_{ax}) with anchored conformation in a ratio 60:40 (Scheme 3).

Reactions of 2-Dithiazinyllithium Compounds with Borane and Methyl Iodide

A) 2-Dithiazinyllithium 4: The reaction of compound 4 with one equivalent of BH₃-S(CH₃)₂ gave regioselectively the N-BH₃ adduct 5, under these conditions the borane adduct does not react with the anionic position C-2 (Scheme 3), while reaction of compound 4 with two equivalents of BH₃-THF afforded a mixture of dithiazinyllithium-5-borane 5, lithium 2-dithiazinylborate-5-borane 6 and lithium 2-dithiazinylborate 7 (Scheme 4). Compound 4 reacts with one equivalent of CH₃I to give the product 2,5-dimethyl-1,3-dithia-5-azacyclohexane-5-borane (9) which, by reaction with borane-THF, afforded the 2,5-dimethyl-1,3-dithia-5-azacyclohexane-5-borane (9). The reaction of 4 with an excess of methyl iodide produced the 2,5,5-trimethyl-1,3,5-dithiazinium iodide 10.

B) 2-Dithiazinyllithium-5-Borane 5: The reaction of 5 with CH₃I at 40°C leads to an exchange of an endocyclic carbon versus an exocyclic boron atom to yield 2,5,5-trimethyldithia-5-azonia-4-boratacyclohexane (11). It has a stereogenic center at C-2 and prefers the conformation shown in Scheme 5. The reaction of compound 5 with one equivalent of BH₃-S(CH₃)₂ produces, as the main product, the lithium 2-dithiazinylborate 6, which presents in the ¹¹B-NMR spectrum a quadruplet at $\delta = -29.7$ ($J_{B-H} = 80$ Hz, CDCl₃) of the 2-BH₃ group, and a broad signal at $\delta = -8.0$ of the N-BH₃ group. The ⁷Li-NMR shows a signal at $\delta = -1.35$ ($w_{1/2} = 33.6$ Hz). In this reaction some trimethylamine-borane is produced by reductive cleavage of the ring.

Conclusions

Two stable dimeric covalent organolithium compounds, 5-methyl-1,3,5-dithiazinyllithium 4 and 5-methyl-1,3,5-dithiazinyllithium—5-borane 5, were prepared which showed a preferred chair conformation with two different configurations at the carbanion center. Compounds 4 and 5 have the lithium ion in axial and equatorial positions, respectively. The lithium 5-methyl-1,3,5-dithiazinylborate—5-borane 6 was obtained which is also in a fixed conformation with both borane groups in equatorial positions. Reaction of 4 with one equivalent of BH₃-S(CH₃)₂ afforded

Figure 3. a) Stable structures of the dimer of 4 and b) its equatorial lithium isomer, found by molecular-mechanics calculations[8]

Figure 4. ¹H- and ¹³C-NMR data of 1,3-dizhiocyclohexane, its lithium and 2-alkyl derivative

Scheme 3

Scheme 4

exclusively compound 5. With an excess of borane, compound 6 was also observed. The reported compounds may

Scheme 5

be classified in two isolobal groups, one including 1-4 and 5, and another 6, 9, 7, and 11.

Experimental Section

General: ¹H, ⁷Li, ¹¹B, ¹³C, and ¹⁵N NMR: Jeol 270 GXS spectrometer at 270, 104.88, 86.55, 67.80, and 27.25 MHz, respectively; ¹H- and ¹³C-NMR chemical shifts were referenced to TMS, δ⁷Li to LiClO₄ (D₂O infinited dilution), δ¹¹B to Et₂O-BF₃ and δ¹⁵N to neat CH₃NO₂. – Anhydrous solvents were prepared according to the usual laboratory methods. All reactions were carried out in an inert atmosphere in oven-dried glassware. – Mass spectra were recorded with a Hewlett-Packard 5989 mass spectrometer. – Melting points are uncorrected.

5-Methyl-1,3,5-dithiazine 1: Compound 1 was prepared as described in ref. [12]. - ¹H NMR (90.05 MHz, CDCl₃): δ = 4.39 (br. s, 4H, 2 × 4-H and 2 × 6-H), 4.05 (br. s, 2H, 2-H), 2.61 (br. s, 3H, 7-H). - ¹H NMR (90.05 MHz, -80 °C, [D₈]THF): δ = 2.59 (s, 3H, 7-H), 3.56 (dt, J = 13.3 and 2.6, 1H, 2-H_{eq}), 3.93 (dt, J = 12.7 and 2.6, 2H, 4-H_{eq} and 6-H_{ax}), 4.60 (d, J = 13.3, 1H, 2-H_{ax}), 4.95 (d, J = 12.7, 2H, 4-H_{ax} and 6-H_{ax}). - ¹³C NMR (67.80 MHz, CDCl₃): δ = 34.28 (d, J = 151.0, C-2), 59.89 (d, J = 152.1, C-4 and C-6), 37.49 (q, J = 135.5, C-7). - ¹⁵N NMR (27.25 MHz, CDCl₃): δ = -360.5 (s).

5-Methyl-1,3,5-dithiazin-2-yllithium $4^{[4]}$: A solution of compound 1 (0.10 g, 0.74 mmol) in anhydrous THF (20 ml) was cooled at $-78\,^{\circ}$ C under dry nitrogen, and 0.81 ml of a solution of *n*Bu Li/hexane (1.0 m, 0.81 mmol) was added dropwise. The reaction mixture was stirred for 30 min and then the solvent was evaporated in vacuo to $-5\,^{\circ}$ C to leave compound 4 as a white solid. $-{}^{1}$ H NMR (270 MHz, [D₈]THF): δ = 2.71 (s, 3H, N[CH₃]_{ax}), 3.22 (d, J = 12.1, 2H, 4-H_{eq} and 6-H_{eq}), 3.31 (s, 1H, 2-H_{eq}), 4.53 (d, J = 12.1, 2H, 4-H_{ax} and 6-H_{ax}). $-{}^{13}$ C NMR (68.80 MHz, [D₈]THF): δ = 31.32 (d, J = 130, C-2), 38.43 (q, J = 133.3, N[CH₃]_{ax}), 62.57 (t,

FULL PAPER _______ A. Flores-Parra et al.

J = 145.3, C-4 and C-6). - ⁷Li NMR (104.88 MHz, [D₈]THF): $\delta = -2.46$ (s). - ¹⁵N NMR (27.25 MHz, [D₈]THF): $\delta = -357.6$ (s). - MS (15 eV); m/z (%): 141.15 (1) [1/2 M⁺], 281.30 (8) [M⁺ - H].

2-Deuterio-5-methyl-1,3,5-dithiazine **1**[**D**₁]: To a solution of compound **1** (0.10 g, 0.74 mmol) in anhydrous THF (20 ml) 0.5 ml of D₂O were added. The reaction mixture was stirred for 5 min and then the solvent was evaporated in vacuo. Compound **1**[**D**₁] is a yellow liquid (0.1 g, 100%). — C₄H₈DNS₂[C₄H₈O]_{1/8} (145.27): calcd. C 37.20, H 7.63, N 9.64, S 44.14; found C 37.47, H 6.92, N 10.24, S 45.20. — ¹H NMR (270 MHz, [D₈]THF): δ = 2.61 (s, 3 H, N[CH₃]_{ax}), 4.04 (s, 1 H, 2-H), 4.40 (s, 4 H, 2 × 4-H and 2 × 6-H). — ¹³C NMR (68.80 MHz, [D₈]THF): δ = 34.02 (t, $J_{\rm CD}$ = 22.0, C-2), 37.53 ([CH₃]_{ax}), 59.81 (C-4 and C-6). — MS (20 eV) m/z (%): 44.00 (100), 42.00 (84), 57.15 (81), 135.15 (55), 136.15 (27).

Equatorial Isomer $1|D_1|_{eq}$: ¹H NMR (270 MHz, -80°C, [D₈]THF): $\delta = 2.59$ (s, 3H, N[CH₃]_{ax}), 3.96 (d, J = 12.5, 2H, 4-H_{eq} and 6-H_{eq}), 4.57 (s, 1H, 2-H_{ax}), 4.94 (d, J = 12.5, 2H, 4-H_{ax} and 6-H_{ax}).

Axial Isomer $1|D_1|_{ax}$: ¹H NMR (270 MHz, -80° C, $[D_8]$ THF): $\delta = 2.59$ (s, 3H, N[CH₃]_{ax}), 3.60 (s, 1H, 2-H_{ax}), 3.96 (d, J = 12.5, 2H, 4-H_{cq} and 6-H_{cq}), 4.94 (d, J = 12.5, 2H, 4-H_{ax} and 6-H_{ax}).

5-Methyl-1,3,5-dithiazine-5-Borane **2**^[3]: A solution of compound **1** (0.10 g, 0.74 mmol) in anhydrous THF (20 ml) was cooled at $-78\,^{\circ}$ C under dry nitrogen and 0.24 ml of a solution of BH₃-THF (3.03 M, 0.74 mmol) was added. The reaction mixture was stirred for 30 min and then the solvent was evaporated in vacuo at $-5\,^{\circ}$ C to give compound **2**. - ¹H NMR (270 MHz, CDCl₃): δ = 2.92 (s, 3H, CH_{3 ax}), 3.46 (dt, J = 13.9, 2.0; 1H, 2-H_{eq}), 3.91 (dd, J = 13.9, 2.0; 2H, 4-H_{eq} and 6-H_{eq}), 4.10 (d, J = 13.9, 1H, 2-H_{ax}), 4.44 (d, J = 139, 1H, 6-H_{ax}). - ¹³C NMR (68.80 MHz, CDCl₃): δ = 30.20 (ddt, J = 155.3, 147.6, 6.6, C-2), 42.91 (qt, J = 141.1, 5.5, N[CH₃]_{ax}), 62.11 (t, J = 154.6, C-4 and C-6). - ¹¹B NMR (86.55 MHz, CDCl₃): δ = -8.0 (q, J = 98).

5-Methyl-1,3,5-dithiazin-2-yllithium—5-Borane **5** was prepared by two methods: a) the same procedure as applied to the synthesis of **4**, using compound **2**, b) same procedure as applied to the synthesis of **2**, using compound **4**. – ¹H NMR (270 MHz, CDCl₃): δ = 2.69 (s, 3H, N[CH₃]_{ax}), 3.22 (d, J = 13.0, 2H, 4-H_{eq} and 6-H_{eq}), 3.52 (s, 1H, 2-H_{ax}), 3.62 (d, J = 13.0, 2H, 4-H_{ax} and 6-H_{ax}). – ¹³C NMR (68.80 MHz, CDCl₃): δ = 19.42 (d, J = 133.0, C-2), 41.45 (q, J = 140.0, N[CH₃]_{ax}), 64.41 (t, J = 152.6, C-4 and C-6). – ¹¹B NMR (86.55 MHz, CDCl₃): δ = -8.45 (br. s). – ⁷Li NMR (104.88 MHz, CDCl₃): δ = -2.39 (s). – MS (15 eV) mlz (%): 155.45 (2) [1/2 M⁺], 285.50 (1) [M⁺ - B₂H₄].

2-Deuterio-5-methyl-1,3-dithia-5-azacyclohexane – 5-Borane **2**[**D**₁]: To a solution of compound **5** (0.11 g, 0.74 mmol) in anhydrous THF (20 ml) 0.5 ml of D₂O was added. The reaction mixture was stirred for 5 min and then the solvent was evaporated in vacuo. A mixture of compounds **2**[**D**₁] with 10% of dithiazine **1** was obtained. – ¹³C NMR (68.80 MHz, CDCl₃): δ = 29.85 (t, $J_{\rm CD}$ = 24.3, C-2), 42.86 (N[CH₃]_{ax}), 62.05 (C-4 and C-6). – ¹¹B NMR (86.55 MHz, CDCl₃): δ = -8.18 (q, J = 100). – MS (20 eV) m/z (%): 44.15 (40), 57.15 (100), 89.20 (72), 136.30 (79), 137.30 (87), 150.30 (2).

Equatorial Isomer $2[D_1]_{eq}$: ¹H NMR (270 MHz, CDCl₃): $\delta = 2.92$ (s, 3H, N[CH₃]_{ax}), 3.92 (d, J = 13.7, 2H, 4-H_{eq} and 6-H_{eq}), 4.08 (s, 1H, 2-H_{eq}), 4.44 (d, J = 13.7, 2H, 4-H_{ax} and 6-H_{ax}).

Axial Isomer **2**[D_{1}]_{ax}: ¹H NMR (270 MHz, CDCl₃): $\delta = 2.92$ (s, 3H, N[CH₃]_{ax}), 3.92 (d, J = 13.7, 2H, 4-H_{eq} and 6-H_{eq}), 3.45 (s, 1H, 2-H_{ax}), 4.44 (d, J = 13.7, 2H, 4-H_{ax} and 6-H_{ax}).

2,5-Dimethyl-1,3,5-dithiazine-5-Borane 9: Compound 9 was obtained by two methods: a) from anion 5 (0.11 g, 0.74 mmol) in anhydrous THF (20 ml) at -78 °C, by treatment with CH₃I (0.23) ml, 3.7 mmol); or b) from compound 8 (0.11 g, 0.74 mmol) in anhydrous THF (20 ml) by adding 0.24 ml (3.03 M BH₃-THF, 0.74 mmol) at -78 °C. The reaction mixture was stirred for 5 min, and the solvent was evaporated in vacuo. Compound 9 was obtained as a white solid; m.p. 190°C (dec.). $-C_5H_{14}BNS_2$ (163.11); calcd. C 36.81, H 8.65, N 8.59; found C 36.65, H 7.00, N 8.46. – ¹H NMR (270 MHz, CDCl₃): $\delta = 1.52$ (d, J = 6.8, 3H, C[CH₃]_{eq}), 2.86 (s, 3H, N[CH₃]_{ax}), 3.93 (d, J = 41.1, 2H, 4-H_{eq} and 6-H_{eq}), 4.22 (q, J = 6.8, 1H, 2-H_{ax}), 4.47 (d, J = 14.1, 2H, 4-H_{ax} and 6-H_{ax}). -¹³C NMR (68.80 MHz, CDCl₃): $\delta = 19.54$ (q, J = 134.4, $C[CH_3]_{eq}$), 41.09 (d, J = 157.5, C-2), 42.55 (q, J = 140.0, $N[CH_3]_{ax}$), 63.02 (t, J = 154.2, C-4 and C-6). $- {}^{11}B$ NMR (86.55) MHz, CDCl₃): $\delta = -8.5$ (q, J = 94.7).

2,5,5-Trimethyl-1,3-dithia-5-azonia-4-boratacyclohexane 11: A solution of compound 9 (0.12 g, 0.74 mmol) in anhydrous THF (20 ml) was heated (40°C). The reaction mixture was stirred for 20 min and the solvent was evaporated in vacuo. Compound 11 was obtained as a white solid; m.p. 190°C (dec.). — $C_5H_{14}BNS_2$ (163.11): calcd. C 36.81, H 8.65, N 8.59; found C 36.52, H 6.91, N 8.79. — 1H NMR (270 MHz, CDCl₃): δ = 2.65 (d, J = 6.8, 3H, C[CH₃]e_q), 2.71 (s, 3H, N[CH₃]e_q), 2.80 (s, 3H, N[CH₃]a_x), 3.93 (d, J = 12.7, 1H, 4-H_{eq}), 4.05 (q, J = 6.8, 1H, 2-H_{ax}), 4.30 (d, J = 12.7, 1H, 4-H_{ax}). — 13 C NMR (68.80 MHz, CDCl₃): δ = 23.17 (q, J = 127.8, C[CH₃]e_q), 41.77 (d, J = 142.1, C-2), 44.92 (q, J = 140.0, N[CH₃]a_x), 51.07 (q, J = 139.9, N[CH₃]e_q), 63.70 (t, J = 152.6, C-4). — 11 B NMR (86.55 MHz, CDCl₃): δ = -3.60 (t, J = 113.7).

Lithium 5-Methyl-1,3,5-dithiazin-2-ylborate-5-Borane 6: A solution of compound 5 (0.11 g, 0.74 mmol) in anhydrous THF (20 ml) was cooled to -78°C under dry nitrogen and 0.6 ml of a solution of BH₃-S(CH₃)₂ (1.33 M, 0.81 mmol) was added dropwise. The reaction mixture was stirred for 15 min, and the solvent was evaporated in vacuo at -5°C, to give compound 6 as a white solid. - ¹H NMR (270 MHz, CDCl₃): δ = 2.84 (s, 3H, N[CH₃]_{ax}), 3.46 (br. s, 1H, 2-H_{ax}), 3.75 (d, J = 13.8, 2H, 4-H_{eq} and 6-H_{eq}), 4.32 (d, J = 13.8, 2H, 4-H_{ax} and 6-H_{ax}). - ¹³C NMR (68.80 MHz, CDCl₃): δ = 36.20 (br. s, C-2), 42.12 (q, J = 139.0, N[CH₃]_{ax}). - ¹¹B NMR (86.55 MHz, CDCl₃): δ = -8.0 (br. s), -29.7 (q, J = 82.1). - ⁷Li NMR (104.88 MHz, CDCl₃): δ = -2.87 (s).

2,5-Dimethyl-1,3,5-dithiazine 8: A solution of compound 1 (0.10 g, 0.74 mmol) in anhydrous THF (20 ml) was cooled to -78°C under dry nitrogen, 0.81 ml of nBuLi/hexane (1.0 m, 0.81 mmol) was added dropwise. The reaction mixture was stirred for 30 min, and CH₃I (0.23 ml, 3.7 mmol) was added. The reaction was stirred and quenched after 20 min with 10 ml of water. Compound 8 was extracted from the reaction mixture with CH2Cl2 to give a yellow liquid (0.11 g, 100%). $-C_5H_{11}NS_2[H_2O]_2$ (185.31): calcd. C 32.41, H 8.15, N 7.55, S 34.60; found C 33.19, H 5.94, N 7.25, S 31.01. - ¹H NMR (270 MHz, CDCl₃): $\delta = 1.46$ (d, J = 4.2, 3H, $C[CH_3]_{eq}$), 2.56 (s, 3H, $N[CH_3]_{ax}$), 4.09 (d, J = 12.6, 2H, 4- H_{eq} and 6-H_{eq}), 4.24 (q, J = 4.2, 1H, 2-H_{ax}), 4.67 (d, J = 12.6, 2H, 4- H_{ax} and $\dot{6}$ - H_{ax}). - ¹³C NMR (68.80 MHz, CDCl₃): δ = 22.64 (q, J = 129.4, C[CH₃]_{eq}), 37.02 (q, J = 135.2, N[CH₃]_{ax}), 44.43 (d, J = 129.4), J = 129.4, C[CH₃]_{eq}) 153.1, C-2), 60.30 (t, J = 153.1, C-4 and C-6). – MS (20 eV) m/z(%): 44.05 (100), 42.00 (92), 57.05 (64), 149.20 (53).

2,5,5-Trimethyl-1,3,5-dithiazinium Iodide 10: A solution of compound 4 (0.10, 0.74 mmol) in anhydrous THF (20 ml) was cooled to -78 °C under dry nitrogen, 0.8 ml of nBuLi/hexane (1.0 m, 0.81 mmol) was added dropwise. The reaction mixture was stirred for

30 min and CH₃I (3.7 ml, 0.23 mmol) was added. The reaction was quenched with water (5 ml) and extracted with CH₂Cl₂. Compound 10 is a yellow liquid (0.17 g, 80%). - 1H NMR (270 MHz, $[D_6]DMSO$): $\delta = 1.52$ (br. s, 3H, C[CH₃]), 3.32 (s, 3H, N[CH₃]), 3.31 (s, 3H, N[CH₃]), 4.79 (br. s, 2H, 4-H_{eq} and 6-H_{eq}), 5.30 (br. s, 3H, 2-H_{ax}, 4-H_{ax} and 6-H_{ax}). $- {}^{13}$ C NMR (68.80 MHz, CDCl₃): $\delta = 19.03$ (br. s, C[CH₃]), 39.40 (br. s, C-2), 44.01 (s, N[CH₃]_{ax}), 54.21 (br. s, N[NCH₃]_{eq}), 64.24 (br. s, C-4 and C-6).

G. Cadenas-Pliego, M. J. Rosales-Hoz, R. Contreras, A. Flores-

Parra, Tetrahedron Asymm. 1994, 5, 633-640.

[4] A. Flores-Parra, F. Khuong-Huu, *Tetrahedron* **1986**, 5925–5930.

[5] F. W. Wehrli in Annual Reports on NMR Spectroscopy (Ed.: G. A. Webb), Academic Press Inc., New York, 1979, 9, p. 149 153.

J.-M. Lehn, G. Wipff, J. Am. Chem. Soc. 1976, 98, 7498 7505. R. Amstutz, D. Seebach, P. Seiler, B. Schweizer, J. D. Dunitz, Angew. Chem. 1979, 92, 59-60; Angew. Chem. Int. Ed. Engl. **1980**, 19, 53-53.

[8] U. Burkert, N. L. Allinger, Molecular Mechanics, A.C.S. Mono-

graph 177, Am. Chem. Soc., Washington D. C. 1982. A. G. Abatjoglou, E. L. Eliel, L. F. Kuyper, *J. Am. Chem. Soc.* 1977, 8262–8269.

[10] S. A. Vinogradov, A. E. Mistrukov, I. P. Beletskaya, J. Chem. Soc., Dalton Trans. 1995, 2679-2687.

[11] A. Flores-Parra, D. M. Gutiérrez-Avella, R. Contreras, F.

Khuong-Huu, Magn. Reson. Chem. 1989, 27, 544-555

[12] French Patent, 1,341,792/1963 (Chem. Abstr. 1964, 60 5528).

[96249]

^[1] A. Flores-Parra, A. I. Hernández-Bautista, L. Hernández-Sánchez, R. Contreras, Tetrahedron 1991, 47, 6903-6914.

A. Flores-Parra, G. Cadenas-Pliego, L. M. R. Martinez Aguilera, M. L. Garcia-Nares, R. Contreras, Chem. Ber. 1993, 126, 863-867.